Endocrine Activity of Extraembryonic Membranes Extends beyond Placental Amniotes
نویسندگان
چکیده
BACKGROUND During development, all amniotes (mammals, reptiles, and birds) form extraembryonic membranes, which regulate gas and water exchange, remove metabolic wastes, provide shock absorption, and transfer maternally derived nutrients. In viviparous (live-bearing) amniotes, both extraembryonic membranes and maternal uterine tissues contribute to the placenta, an endocrine organ that synthesizes, transports, and metabolizes hormones essential for development. Historically, endocrine properties of the placenta have been viewed as an innovation of placental amniotes. However, an endocrine role of extraembryonic membranes has not been investigated in oviparous (egg-laying) amniotes despite similarities in their basic structure, function, and shared evolutionary ancestry. In this study, we ask whether the oviparous chorioallantoic membrane (CAM) of chicken (Gallus gallus) has the capability to synthesize and receive signaling of progesterone, a major placental steroid hormone. METHODOLOGY/PRINCIPAL FINDINGS We quantified mRNA expression of key steroidogenic enzymes involved in progesterone synthesis and found that 3beta-hydroxysteroid dehydrogenase, which converts pregnenolone to progesterone exhibited a 464 fold increase in the CAM from day 8 to day 18 of embryonic development (F(5, 68) = 89.282, p<0.0001). To further investigate progesterone synthesis, we performed explant culture and found that the CAM synthesizes progesterone in vitro in the presence of a steroid precursor. Finally, we quantified mRNA expression and performed protein immunolocalization of the progesterone receptor in the CAM. CONCLUSIONS/SIGNIFICANCE Collectively, our data indicate that the chick CAM is steroidogenic and has the capability to both synthesize progesterone and receive progesterone signaling. These findings represent a paradigm shift in evolutionary reproductive biology by suggesting that endocrine activity of extraembryonic membranes is not a novel characteristic of placental amniotes. Rather, we hypothesize that these membranes may share an additional unifying characteristic, steroidogenesis, across amniotes at large.
منابع مشابه
Biological activity of oestradiol sulphate in an oviparous amniote: implications for maternal steroid effects.
Understanding the many factors that underlie phenotypic variation is of profound importance to evolutionary biologists. The embryonic endocrine environment is one such factor that has received much attention. In placental amniotes, the dynamic interaction of maternal and embryonic steroid production and metabolism is critical to regulating the endocrine environment. Less is known about how embr...
متن کاملDiversification and conservation of the extraembryonic tissues in mediating nutrient uptake during amniote development
The transfer of nutrients from the mother through the chorioallantoic placenta meets the nutritional needs of the embryo during human prenatal development. Although all amniotes start with a similar "tool kit" of extraembryonic tissues, an enormous diversity of extraembryonic tissue formation has evolved to accommodate embryological and physiological constraints unique to their developmental pr...
متن کاملSerum-free derivation of human embryonic stem cell lines on human placental fibroblast feeders.
OBJECTIVE To derive new human embryonic stem cell (hESC) lines on pathogen-free human placental fibroblast feeders under serum-free conditions. Because the embryo develops in close contact with extraembryonic membranes, we hypothesized that placental mesenchyme might replicate the stem cell niche in situ. DESIGN We isolated and characterized human placental fibroblast lines from individual do...
متن کاملErratum to “Periostin as a Biomarker of the Amniotic Membrane”
Tracing the precise developmental origin of amnion and amnion-derived stem cells is still challenging and depends chiefly on analyzing powerful genetic model amniotes like mouse. Profound understanding of the fundamental differences in amnion development in both the disc-shaped primate and human embryo and the cup-shaped mouse embryo is pivotal in particular when sampling amniotic membrane from...
متن کاملEvolution of Axis Specification Mechanisms in Jawed Vertebrates: Insights from a Chondrichthyan
The genetic mechanisms that control the establishment of early polarities and their link with embryonic axis specification and patterning seem to substantially diverge across vertebrates. In amphibians and teleosts, the establishment of an early dorso-ventral polarity determines both the site of axis formation and its rostro-caudal orientation. In contrast, amniotes retain a considerable plasti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS ONE
دوره 4 شماره
صفحات -
تاریخ انتشار 2009